7,788 research outputs found

    Hybrid Geometric Reduction of Hybrid Systems

    Get PDF
    This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting

    A computational model for three-dimensional incompressible wall jets with large cross flow

    Get PDF
    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed

    Sufficient conditions for the existence of Zeno behavior in a class of nonlinear hybrid systems via constant approximations

    Get PDF
    The existence of Zeno behavior in hybrid systems is related to a certain type of equilibria, termed Zeno equilibria, that are invariant under the discrete, but not the continuous, dynamics of a hybrid system. In analogy to the standard procedure of linearizing a vector field at an equilibrium point to determine its stability, in this paper we study the local behavior of a hybrid system near a Zeno equilibrium point by considering the value of the vector field on each domain at this point, i.e., we consider constant approximations of nonlinear hybrid systems. By means of these constant approximations, we are able to derive conditions that simultaneously imply both the existence of Zeno behavior and the local exponential stability of a Zeno equilibrium point. Moreover, since these conditions are in terms of the value of the vector field on each domain at a point, they are remarkably easy to verify

    The Hydrodynamical Limit of Quantum Hall system

    Full text link
    We study the current algebra of FQHE systems in the hydrodynamical limit of small amplitude, long-wavelength fluctuations. We show that the algebra simplifies considerably in this limit. The hamiltonian is expressed in a current-current form and the operators creating inter-Landau level and lowest Landau level collective excitations are identified.Comment: Revtex, 16 page

    Magnetotransport of Dirac Fermions on the surface of a topological insulator

    Get PDF
    We study the properties of Dirac fermions on the surface of a topological insulator in the presence of crossed electric and magnetic fields. We provide an exact solution to this problem and demonstrate that, in contrast to their counterparts in graphene, these Dirac fermions allow relative tuning of the orbital and Zeeman effects of an applied magnetic field by a crossed electric field along the surface. We also elaborate and extend our earlier results on normal metal-magnetic film-normal metal (NMN) and normal metal-barrier-magnetic film (NBM) junctions of topological insulators [Phys. Rev. Lett. {\bf 104}, 046403 (2010)]. For NMN junctions, we show that for Dirac fermions with Fermi velocity vFv_F, the transport can be controlled using the exchange field J{\mathcal J} of a ferromagnetic film over a region of width dd. The conductance of such a junction changes from oscillatory to a monotonically decreasing function of dd beyond a critical J{\mathcal J} which leads to the possible realization of magnetic switches using these junctions. For NBM junctions with a potential barrier of width dd and potential V0V_0, we find that beyond a critical J{\mathcal J}, the criteria of conductance maxima changes from χ=eV0d/vF=nπ\chi= e V_0 d/\hbar v_F = n \pi to χ=(n+1/2)π\chi= (n+1/2)\pi for integer nn. Finally, we compute the subgap tunneling conductance of a normal metal-magnetic film-superconductor (NMS) junctions on the surface of a topological insulator and show that the position of the peaks of the zero-bias tunneling conductance can be tuned using the magnetization of the ferromagnetic film. We point out that these phenomena have no analogs in either conventional two-dimensional materials or Dirac electrons in graphene and suggest experiments to test our theory.Comment: 11 pages, 12 figures; v

    Tuning the conductance of Dirac fermions on the surface of a topological insulator

    Get PDF
    We study the transport properties of the Dirac fermions with Fermi velocity vFv_F on the surface of a topological insulator across a ferromagnetic strip providing an exchange field J{\mathcal J} over a region of width dd. We show that the conductance of such a junction changes from oscillatory to a monotonically decreasing function of dd beyond a critical J{\mathcal J}. This leads to the possible realization of a magnetic switch using these junctions. We also study the conductance of these Dirac fermions across a potential barrier of width dd and potential V0V_0 in the presence of such a ferromagnetic strip and show that beyond a critical J{\mathcal J}, the criteria of conductance maxima changes from χ=eV0d/vF=nπ\chi= e V_0 d/\hbar v_F = n \pi to χ=(n+1/2)π\chi= (n+1/2)\pi for integer nn. We point out that these novel phenomena have no analogs in graphene and suggest experiments which can probe them.Comment: v1 4 pages 5 fig

    Anharmonic quantum contribution to vibrational dephasing

    Get PDF
    Based on a quantum Langevin equation and its corresponding Hamiltonian within a c-number formalism we calculate the vibrational dephasing rate of a cubic oscillator. It is shown that leading order quantum correction due to anharmonicity of the potential makes a significant contribution to the rate and the frequency shift. We compare our theoretical estimates with those obtained from experiments for small diatomics N2N_2, O2O_2 and COCO.Comment: 21 pages, 1 figure and 1 tabl

    A consistent design procedure for supercritical airfoils in free air and a wind tunnel

    Get PDF
    A computational inverse procedure for transonic airfoils in which shapes are determined supporting prescribed pressure distributions is presented. The method uses the small disturbance equation and a consistent analysis-design differencing procedure at the airfoil surface. This avoids the intermediate analysis-design-analysis iterations. The effect of any openness at the trailing edge is taken onto account by adding an effective source term in the far field. The final results from a systematic expansion procedure which models the far field for solid, ideal slotted, and free jet tunnel walls are presented along with some design results for the associated boundary conditions and those for a free flight
    corecore